x ≥ 0 AND 4x2 ≤ 300

You must use calculus to solve the following problems.

[a] What is the largest possible volume of the box?

$$4x^{2}+6xy=300$$

 $2x^{2}+3xy=150$
 $y=\frac{150-2x^{2}}{3x}$

$$V = 2x^{2}(\frac{150-2x^{2}}{3x}) = \frac{300x-4x^{3}}{3}$$
 on $x \in [0,513]$

$$V' = \frac{300 - 12x^2}{3}$$
 is defined on [0,513]

$$\frac{x}{0}$$
 $\frac{y}{0}$ \frac{y}

[b] Find the dimensions of the box which give the largest possible volume.

Find
$$\int \frac{(3x^4 - 2)^2}{5x^5} dx$$
.
= $\int \frac{9 \times ^8 - 12 \times ^4 + 4}{5 \times ^5} dx$
= $\int \frac{9}{5} \times ^3 - \frac{12}{5} \times ^{-1} + \frac{4}{5} \times ^{-5} dx$
= $\frac{9}{5} + \frac{1}{4} \times ^4 - \frac{12}{5} \ln |x| + \frac{4}{5} (-\frac{1}{4}) \times ^{-4} + C$

= 20x4-Eln/x1-Ex-4+C

SCORE: _____ / 15 PTS

Find
$$\lim_{x\to 0^{+}} \sqrt{x \ln x}$$
. $0 - \infty$

$$= \lim_{x\to 0^{+}} \frac{\ln x}{\sqrt{x^{-\frac{1}{3}}}} - \frac{\infty}{\infty}$$

$$= \lim_{x\to 0^{+}} \frac{1}{\sqrt{x^{-\frac{1}{3}}}} - \frac{1}{\sqrt{x^{-\frac{1}{3}}}}$$

$$= \lim_{x\to 0^{+}} -3x^{\frac{1}{3}} = 0$$

SCORE: / 15 PTS

Does Rolle's Theorem apply to the function $f(x) = \sqrt[3]{x^2 - 8x + 15}$ on the interval [1, 7]?

SCORE: _____/ 15 PTS

(That is, are all conditions of Rolle's Theorem true for $f(x) = \sqrt[3]{x^2 - 8x + 15}$ on the interval [1, 7]?) If yes, find the value of c guaranteed by Rolle's Theorem. If no, explain why not.

$$f'(x) = \frac{1}{3}(x^2 - 8x + 15)^{-\frac{3}{3}}(2x - 8)$$

IS UNDEFINED @ $x^2 - 8x + 15 = 0$
 $(x - 3)(x - 5) = 0$
 $x = 3, 5 \in [1, 7]$

f is not differentiable on [1,7] so rolle's theorem does not apply

f(x) is a continuous function whose derivative f'(x) is shown on the right.

The following questions are about the function f, **NOT THE FUNCTION** f'.

[a] Find the x- coordinates of all inflection points of f .

Justify your answer very briefly.

[b] Find the intervals over which f is increasing.

Justify your answer very briefly.

[c] Find all critical numbers of f, and state what the First Derivative Test tells you about each one.

Justify your answer very briefly.

f(x) is a continuous and differentiable function whose second derivative f''(x) is shown on the right.

SCORE: _____ / 12 PTS

The following questions are about the function f, NOT THE FUNCTION f''.

[a] If f'(-6) = 0,

what does the Second Derivative Test tell you about the point (-6, f(-6))?

Justify your answer very briefly.

[b] Find the intervals over which f is concave up.

Justify your answer very briefly.

$$f''>0:(-8,-4)$$

Graph $f(x) = \frac{x}{(4-x)^3} + 2$ using the process shown in lecture and in the website handout.

SCORE: _____/ 40 PTS

The first and second derivatives are $f'(x) = (4-x)^{-3} + 3x(4-x)^{-4}$ and $f''(x) = 6(4-x)^{-4} + 12x(4-x)^{-5}$.

<u>Do NOT find x-intercepts.</u>

Complete the table below, after showing relevant work (except for entries marked *). You will NOT receive credit for the entries in the table if the relevant work is missing.

★ Domain	★ Discontinuities	y – intercepts <u>ONLY</u>	One sided limits at each discontinuity (write using proper limit notation)	
×+4	×=4	(0,2)	lim f(x) = -00 lim f(x)=0	
Horizontal Asymptotes	Intervals of Increase	Intervals of Decrease	Intervals of Upward Concavity	Intervals of Downward Concavity
y=2	(-2,4) (4,∞)	(-00,-2)	(-4,4)	(-00,-4) (4,00)
Vertical Tangent Lines	Horizontal Tangent Lines	Local Maxima	Local Minima	Inflection Points
NONE	x=-2	NONE	$(-2, [\frac{107}{108})$	$\left(-4, \frac{255}{256}\right)$
f'(x)=(4-x) = (4-x) = 2(4- = 0 @ f''(x) = 6(4) = 6(4)	$5^{4}(2 \times +4)$ $\times)^{4}(x+2) \cup \\ \times = -2$ $-\times)^{-5}(4-x+2)$	VDEFINED (0):	=4 & DOMAN) = 4 & DOMAN)	
	f'	- IP + MIN	2+ +	